forked from FFmpeg/FFmpeg
avfilter/af_firequalizer: switch to TX from lavu
This commit is contained in:
parent
59b16355ec
commit
4f6c06e8ff
2 changed files with 133 additions and 122 deletions
3
configure
vendored
3
configure
vendored
|
@ -3671,8 +3671,6 @@ elbg_filter_deps="avcodec"
|
|||
eq_filter_deps="gpl"
|
||||
erosion_opencl_filter_deps="opencl"
|
||||
find_rect_filter_deps="avcodec avformat gpl"
|
||||
firequalizer_filter_deps="avcodec"
|
||||
firequalizer_filter_select="rdft"
|
||||
flip_vulkan_filter_deps="vulkan spirv_compiler"
|
||||
flite_filter_deps="libflite"
|
||||
framerate_filter_select="scene_sad"
|
||||
|
@ -7464,7 +7462,6 @@ enabled cover_rect_filter && prepend avfilter_deps "avformat avcodec"
|
|||
enabled ebur128_filter && enabled swresample && prepend avfilter_deps "swresample"
|
||||
enabled elbg_filter && prepend avfilter_deps "avcodec"
|
||||
enabled find_rect_filter && prepend avfilter_deps "avformat avcodec"
|
||||
enabled firequalizer_filter && prepend avfilter_deps "avcodec"
|
||||
enabled mcdeint_filter && prepend avfilter_deps "avcodec"
|
||||
enabled movie_filter && prepend avfilter_deps "avformat avcodec"
|
||||
enabled pan_filter && prepend avfilter_deps "swresample"
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
#include "libavutil/opt.h"
|
||||
#include "libavutil/eval.h"
|
||||
#include "libavutil/avassert.h"
|
||||
#include "libavcodec/avfft.h"
|
||||
#include "libavutil/tx.h"
|
||||
#include "avfilter.h"
|
||||
#include "internal.h"
|
||||
#include "audio.h"
|
||||
|
@ -67,22 +67,33 @@ typedef struct OverlapIndex {
|
|||
typedef struct FIREqualizerContext {
|
||||
const AVClass *class;
|
||||
|
||||
RDFTContext *analysis_rdft;
|
||||
RDFTContext *analysis_irdft;
|
||||
RDFTContext *rdft;
|
||||
RDFTContext *irdft;
|
||||
FFTContext *fft_ctx;
|
||||
RDFTContext *cepstrum_rdft;
|
||||
RDFTContext *cepstrum_irdft;
|
||||
AVTXContext *analysis_rdft;
|
||||
av_tx_fn analysis_rdft_fn;
|
||||
AVTXContext *analysis_irdft;
|
||||
av_tx_fn analysis_irdft_fn;
|
||||
AVTXContext *rdft;
|
||||
av_tx_fn rdft_fn;
|
||||
AVTXContext *irdft;
|
||||
av_tx_fn irdft_fn;
|
||||
AVTXContext *fft_ctx;
|
||||
av_tx_fn fft_fn;
|
||||
AVTXContext *cepstrum_rdft;
|
||||
av_tx_fn cepstrum_rdft_fn;
|
||||
AVTXContext *cepstrum_irdft;
|
||||
av_tx_fn cepstrum_irdft_fn;
|
||||
int analysis_rdft_len;
|
||||
int rdft_len;
|
||||
int cepstrum_len;
|
||||
|
||||
float *analysis_buf;
|
||||
float *analysis_tbuf;
|
||||
float *dump_buf;
|
||||
float *kernel_tmp_buf;
|
||||
float *kernel_tmp_tbuf;
|
||||
float *kernel_buf;
|
||||
float *tx_buf;
|
||||
float *cepstrum_buf;
|
||||
float *cepstrum_tbuf;
|
||||
float *conv_buf;
|
||||
OverlapIndex *conv_idx;
|
||||
int fir_len;
|
||||
|
@ -151,23 +162,27 @@ AVFILTER_DEFINE_CLASS(firequalizer);
|
|||
|
||||
static void common_uninit(FIREqualizerContext *s)
|
||||
{
|
||||
av_rdft_end(s->analysis_rdft);
|
||||
av_rdft_end(s->analysis_irdft);
|
||||
av_rdft_end(s->rdft);
|
||||
av_rdft_end(s->irdft);
|
||||
av_fft_end(s->fft_ctx);
|
||||
av_rdft_end(s->cepstrum_rdft);
|
||||
av_rdft_end(s->cepstrum_irdft);
|
||||
av_tx_uninit(&s->analysis_rdft);
|
||||
av_tx_uninit(&s->analysis_irdft);
|
||||
av_tx_uninit(&s->rdft);
|
||||
av_tx_uninit(&s->irdft);
|
||||
av_tx_uninit(&s->fft_ctx);
|
||||
av_tx_uninit(&s->cepstrum_rdft);
|
||||
av_tx_uninit(&s->cepstrum_irdft);
|
||||
s->analysis_rdft = s->analysis_irdft = s->rdft = s->irdft = NULL;
|
||||
s->fft_ctx = NULL;
|
||||
s->cepstrum_rdft = NULL;
|
||||
s->cepstrum_irdft = NULL;
|
||||
|
||||
av_freep(&s->analysis_buf);
|
||||
av_freep(&s->analysis_tbuf);
|
||||
av_freep(&s->dump_buf);
|
||||
av_freep(&s->kernel_tmp_buf);
|
||||
av_freep(&s->kernel_tmp_tbuf);
|
||||
av_freep(&s->kernel_buf);
|
||||
av_freep(&s->tx_buf);
|
||||
av_freep(&s->cepstrum_buf);
|
||||
av_freep(&s->cepstrum_tbuf);
|
||||
av_freep(&s->conv_buf);
|
||||
av_freep(&s->conv_idx);
|
||||
}
|
||||
|
@ -187,22 +202,21 @@ static void fast_convolute(FIREqualizerContext *av_restrict s, const float *av_r
|
|||
if (nsamples <= s->nsamples_max) {
|
||||
float *buf = conv_buf + idx->buf_idx * s->rdft_len;
|
||||
float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
|
||||
float *tbuf = s->tx_buf;
|
||||
int center = s->fir_len/2;
|
||||
int k;
|
||||
|
||||
memset(buf, 0, center * sizeof(*data));
|
||||
memcpy(buf + center, data, nsamples * sizeof(*data));
|
||||
memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*data));
|
||||
av_rdft_calc(s->rdft, buf);
|
||||
s->rdft_fn(s->rdft, tbuf, buf, sizeof(float));
|
||||
|
||||
buf[0] *= kernel_buf[0];
|
||||
buf[1] *= kernel_buf[s->rdft_len/2];
|
||||
for (k = 1; k < s->rdft_len/2; k++) {
|
||||
buf[2*k] *= kernel_buf[k];
|
||||
buf[2*k+1] *= kernel_buf[k];
|
||||
for (k = 0; k <= s->rdft_len/2; k++) {
|
||||
tbuf[2*k] *= kernel_buf[k];
|
||||
tbuf[2*k+1] *= kernel_buf[k];
|
||||
}
|
||||
|
||||
av_rdft_calc(s->irdft, buf);
|
||||
s->irdft_fn(s->irdft, buf, tbuf, sizeof(AVComplexFloat));
|
||||
for (k = 0; k < s->rdft_len - idx->overlap_idx; k++)
|
||||
buf[k] += obuf[k];
|
||||
memcpy(data, buf, nsamples * sizeof(*data));
|
||||
|
@ -226,23 +240,22 @@ static void fast_convolute_nonlinear(FIREqualizerContext *av_restrict s, const f
|
|||
if (nsamples <= s->nsamples_max) {
|
||||
float *buf = conv_buf + idx->buf_idx * s->rdft_len;
|
||||
float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
|
||||
float *tbuf = s->tx_buf;
|
||||
int k;
|
||||
|
||||
memcpy(buf, data, nsamples * sizeof(*data));
|
||||
memset(buf + nsamples, 0, (s->rdft_len - nsamples) * sizeof(*data));
|
||||
av_rdft_calc(s->rdft, buf);
|
||||
s->rdft_fn(s->rdft, tbuf, buf, sizeof(float));
|
||||
|
||||
buf[0] *= kernel_buf[0];
|
||||
buf[1] *= kernel_buf[1];
|
||||
for (k = 2; k < s->rdft_len; k += 2) {
|
||||
for (k = 0; k < s->rdft_len + 2; k += 2) {
|
||||
float re, im;
|
||||
re = buf[k] * kernel_buf[k] - buf[k+1] * kernel_buf[k+1];
|
||||
im = buf[k] * kernel_buf[k+1] + buf[k+1] * kernel_buf[k];
|
||||
buf[k] = re;
|
||||
buf[k+1] = im;
|
||||
re = tbuf[k] * kernel_buf[k] - tbuf[k+1] * kernel_buf[k+1];
|
||||
im = tbuf[k] * kernel_buf[k+1] + tbuf[k+1] * kernel_buf[k];
|
||||
tbuf[k] = re;
|
||||
tbuf[k+1] = im;
|
||||
}
|
||||
|
||||
av_rdft_calc(s->irdft, buf);
|
||||
s->irdft_fn(s->irdft, buf, tbuf, sizeof(AVComplexFloat));
|
||||
for (k = 0; k < s->rdft_len - idx->overlap_idx; k++)
|
||||
buf[k] += obuf[k];
|
||||
memcpy(data, buf, nsamples * sizeof(*data));
|
||||
|
@ -259,12 +272,13 @@ static void fast_convolute_nonlinear(FIREqualizerContext *av_restrict s, const f
|
|||
}
|
||||
}
|
||||
|
||||
static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, FFTComplex *av_restrict conv_buf,
|
||||
static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, AVComplexFloat *av_restrict conv_buf,
|
||||
OverlapIndex *av_restrict idx, float *av_restrict data0, float *av_restrict data1, int nsamples)
|
||||
{
|
||||
if (nsamples <= s->nsamples_max) {
|
||||
FFTComplex *buf = conv_buf + idx->buf_idx * s->rdft_len;
|
||||
FFTComplex *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
|
||||
AVComplexFloat *buf = conv_buf + idx->buf_idx * s->rdft_len;
|
||||
AVComplexFloat *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
|
||||
AVComplexFloat *tbuf = (AVComplexFloat *)s->tx_buf;
|
||||
int center = s->fir_len/2;
|
||||
int k;
|
||||
float tmp;
|
||||
|
@ -275,29 +289,27 @@ static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_
|
|||
buf[center+k].im = data1[k];
|
||||
}
|
||||
memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*buf));
|
||||
av_fft_permute(s->fft_ctx, buf);
|
||||
av_fft_calc(s->fft_ctx, buf);
|
||||
s->fft_fn(s->fft_ctx, tbuf, buf, sizeof(AVComplexFloat));
|
||||
|
||||
/* swap re <-> im, do backward fft using forward fft_ctx */
|
||||
/* normalize with 0.5f */
|
||||
tmp = buf[0].re;
|
||||
buf[0].re = 0.5f * kernel_buf[0] * buf[0].im;
|
||||
buf[0].im = 0.5f * kernel_buf[0] * tmp;
|
||||
tmp = tbuf[0].re;
|
||||
tbuf[0].re = 0.5f * kernel_buf[0] * tbuf[0].im;
|
||||
tbuf[0].im = 0.5f * kernel_buf[0] * tmp;
|
||||
for (k = 1; k < s->rdft_len/2; k++) {
|
||||
int m = s->rdft_len - k;
|
||||
tmp = buf[k].re;
|
||||
buf[k].re = 0.5f * kernel_buf[k] * buf[k].im;
|
||||
buf[k].im = 0.5f * kernel_buf[k] * tmp;
|
||||
tmp = buf[m].re;
|
||||
buf[m].re = 0.5f * kernel_buf[k] * buf[m].im;
|
||||
buf[m].im = 0.5f * kernel_buf[k] * tmp;
|
||||
tmp = tbuf[k].re;
|
||||
tbuf[k].re = 0.5f * kernel_buf[k] * tbuf[k].im;
|
||||
tbuf[k].im = 0.5f * kernel_buf[k] * tmp;
|
||||
tmp = tbuf[m].re;
|
||||
tbuf[m].re = 0.5f * kernel_buf[k] * tbuf[m].im;
|
||||
tbuf[m].im = 0.5f * kernel_buf[k] * tmp;
|
||||
}
|
||||
tmp = buf[k].re;
|
||||
buf[k].re = 0.5f * kernel_buf[k] * buf[k].im;
|
||||
buf[k].im = 0.5f * kernel_buf[k] * tmp;
|
||||
tmp = tbuf[k].re;
|
||||
tbuf[k].re = 0.5f * kernel_buf[k] * tbuf[k].im;
|
||||
tbuf[k].im = 0.5f * kernel_buf[k] * tmp;
|
||||
|
||||
av_fft_permute(s->fft_ctx, buf);
|
||||
av_fft_calc(s->fft_ctx, buf);
|
||||
s->fft_fn(s->fft_ctx, buf, tbuf, sizeof(AVComplexFloat));
|
||||
|
||||
for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) {
|
||||
buf[k].re += obuf[k].re;
|
||||
|
@ -361,17 +373,17 @@ static void dump_fir(AVFilterContext *ctx, FILE *fp, int ch)
|
|||
fprintf(fp, "%15.10f %15.10f\n", (double)x / rate, (double) s->analysis_buf[x]);
|
||||
}
|
||||
|
||||
av_rdft_calc(s->analysis_rdft, s->analysis_buf);
|
||||
s->analysis_rdft_fn(s->analysis_rdft, s->analysis_tbuf, s->analysis_buf, sizeof(float));
|
||||
|
||||
fprintf(fp, "\n\n# freq[%d] (frequency desired_gain actual_gain)\n", ch);
|
||||
|
||||
for (x = 0; x <= s->analysis_rdft_len/2; x++) {
|
||||
int i = (x == s->analysis_rdft_len/2) ? 1 : 2 * x;
|
||||
int i = 2 * x;
|
||||
vx = (double)x * rate / s->analysis_rdft_len;
|
||||
if (xlog)
|
||||
vx = log2(0.05*vx);
|
||||
ya = s->dump_buf[i];
|
||||
yb = s->min_phase && (i > 1) ? hypotf(s->analysis_buf[i], s->analysis_buf[i+1]) : s->analysis_buf[i];
|
||||
yb = s->min_phase ? hypotf(s->analysis_tbuf[i], s->analysis_tbuf[i+1]) : s->analysis_tbuf[i];
|
||||
if (s->min_phase)
|
||||
yb = fabs(yb);
|
||||
if (ylog) {
|
||||
|
@ -530,45 +542,40 @@ static void generate_min_phase_kernel(FIREqualizerContext *s, float *rdft_buf)
|
|||
double minval = 1e-7 / rdft_len;
|
||||
|
||||
memset(s->cepstrum_buf, 0, cepstrum_len * sizeof(*s->cepstrum_buf));
|
||||
memset(s->cepstrum_tbuf, 0, (cepstrum_len + 2) * sizeof(*s->cepstrum_tbuf));
|
||||
memcpy(s->cepstrum_buf, rdft_buf, rdft_len/2 * sizeof(*rdft_buf));
|
||||
memcpy(s->cepstrum_buf + cepstrum_len - rdft_len/2, rdft_buf + rdft_len/2, rdft_len/2 * sizeof(*rdft_buf));
|
||||
|
||||
av_rdft_calc(s->cepstrum_rdft, s->cepstrum_buf);
|
||||
s->cepstrum_rdft_fn(s->cepstrum_rdft, s->cepstrum_tbuf, s->cepstrum_buf, sizeof(float));
|
||||
|
||||
s->cepstrum_buf[0] = log(FFMAX(s->cepstrum_buf[0], minval));
|
||||
s->cepstrum_buf[1] = log(FFMAX(s->cepstrum_buf[1], minval));
|
||||
|
||||
for (k = 2; k < cepstrum_len; k += 2) {
|
||||
s->cepstrum_buf[k] = log(FFMAX(s->cepstrum_buf[k], minval));
|
||||
s->cepstrum_buf[k+1] = 0;
|
||||
for (k = 0; k < cepstrum_len + 2; k += 2) {
|
||||
s->cepstrum_tbuf[k] = log(FFMAX(s->cepstrum_tbuf[k], minval));
|
||||
s->cepstrum_tbuf[k+1] = 0;
|
||||
}
|
||||
|
||||
av_rdft_calc(s->cepstrum_irdft, s->cepstrum_buf);
|
||||
s->cepstrum_irdft_fn(s->cepstrum_irdft, s->cepstrum_buf, s->cepstrum_tbuf, sizeof(AVComplexFloat));
|
||||
|
||||
memset(s->cepstrum_buf + cepstrum_len/2 + 1, 0, (cepstrum_len/2 - 1) * sizeof(*s->cepstrum_buf));
|
||||
for (k = 1; k < cepstrum_len/2; k++)
|
||||
for (k = 1; k <= cepstrum_len/2; k++)
|
||||
s->cepstrum_buf[k] *= 2;
|
||||
|
||||
av_rdft_calc(s->cepstrum_rdft, s->cepstrum_buf);
|
||||
s->cepstrum_rdft_fn(s->cepstrum_rdft, s->cepstrum_tbuf, s->cepstrum_buf, sizeof(float));
|
||||
|
||||
s->cepstrum_buf[0] = exp(s->cepstrum_buf[0] * norm) * norm;
|
||||
s->cepstrum_buf[1] = exp(s->cepstrum_buf[1] * norm) * norm;
|
||||
for (k = 2; k < cepstrum_len; k += 2) {
|
||||
double mag = exp(s->cepstrum_buf[k] * norm) * norm;
|
||||
double ph = s->cepstrum_buf[k+1] * norm;
|
||||
s->cepstrum_buf[k] = mag * cos(ph);
|
||||
s->cepstrum_buf[k+1] = mag * sin(ph);
|
||||
for (k = 0; k < cepstrum_len + 2; k += 2) {
|
||||
double mag = exp(s->cepstrum_tbuf[k] * norm) * norm;
|
||||
double ph = s->cepstrum_tbuf[k+1] * norm;
|
||||
s->cepstrum_tbuf[k] = mag * cos(ph);
|
||||
s->cepstrum_tbuf[k+1] = mag * sin(ph);
|
||||
}
|
||||
|
||||
av_rdft_calc(s->cepstrum_irdft, s->cepstrum_buf);
|
||||
s->cepstrum_irdft_fn(s->cepstrum_irdft, s->cepstrum_buf, s->cepstrum_tbuf, sizeof(AVComplexFloat));
|
||||
memset(rdft_buf, 0, s->rdft_len * sizeof(*rdft_buf));
|
||||
memcpy(rdft_buf, s->cepstrum_buf, s->fir_len * sizeof(*rdft_buf));
|
||||
|
||||
if (s->dumpfile) {
|
||||
memset(s->analysis_buf, 0, s->analysis_rdft_len * sizeof(*s->analysis_buf));
|
||||
memset(s->analysis_buf, 0, (s->analysis_rdft_len + 2) * sizeof(*s->analysis_buf));
|
||||
memcpy(s->analysis_buf, s->cepstrum_buf, s->fir_len * sizeof(*s->analysis_buf));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *gain_entry)
|
||||
|
@ -613,35 +620,25 @@ static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *g
|
|||
inlink->ch_layout.u.mask : 0;
|
||||
vars[VAR_SR] = inlink->sample_rate;
|
||||
for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
|
||||
float *rdft_buf = s->kernel_tmp_buf + ch * s->rdft_len;
|
||||
float *rdft_buf = s->kernel_tmp_buf + ch * (s->rdft_len * 2);
|
||||
float *rdft_tbuf = s->kernel_tmp_tbuf;
|
||||
double result;
|
||||
vars[VAR_CH] = ch;
|
||||
vars[VAR_CHID] = av_channel_layout_channel_from_index(&inlink->ch_layout, ch);
|
||||
vars[VAR_F] = 0.0;
|
||||
if (xlog)
|
||||
vars[VAR_F] = log2(0.05 * vars[VAR_F]);
|
||||
result = av_expr_eval(gain_expr, vars, ctx);
|
||||
s->analysis_buf[0] = ylog ? pow(10.0, 0.05 * result) : result;
|
||||
|
||||
vars[VAR_F] = 0.5 * inlink->sample_rate;
|
||||
if (xlog)
|
||||
vars[VAR_F] = log2(0.05 * vars[VAR_F]);
|
||||
result = av_expr_eval(gain_expr, vars, ctx);
|
||||
s->analysis_buf[1] = ylog ? pow(10.0, 0.05 * result) : result;
|
||||
|
||||
for (k = 1; k < s->analysis_rdft_len/2; k++) {
|
||||
for (k = 0; k <= s->analysis_rdft_len/2; k++) {
|
||||
vars[VAR_F] = k * ((double)inlink->sample_rate /(double)s->analysis_rdft_len);
|
||||
if (xlog)
|
||||
vars[VAR_F] = log2(0.05 * vars[VAR_F]);
|
||||
result = av_expr_eval(gain_expr, vars, ctx);
|
||||
s->analysis_buf[2*k] = ylog ? pow(10.0, 0.05 * result) : s->min_phase ? fabs(result) : result;
|
||||
s->analysis_buf[2*k+1] = 0.0;
|
||||
s->analysis_tbuf[2*k] = ylog ? pow(10.0, 0.05 * result) : s->min_phase ? fabs(result) : result;
|
||||
s->analysis_tbuf[2*k+1] = 0.0;
|
||||
}
|
||||
|
||||
if (s->dump_buf)
|
||||
memcpy(s->dump_buf, s->analysis_buf, s->analysis_rdft_len * sizeof(*s->analysis_buf));
|
||||
memcpy(s->dump_buf, s->analysis_tbuf, (s->analysis_rdft_len + 2) * sizeof(*s->analysis_tbuf));
|
||||
|
||||
av_rdft_calc(s->analysis_irdft, s->analysis_buf);
|
||||
s->analysis_irdft_fn(s->analysis_irdft, s->analysis_buf, s->analysis_tbuf, sizeof(AVComplexFloat));
|
||||
center = s->fir_len / 2;
|
||||
|
||||
for (k = 0; k <= center; k++) {
|
||||
|
@ -687,13 +684,13 @@ static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *g
|
|||
}
|
||||
|
||||
memset(s->analysis_buf + center + 1, 0, (s->analysis_rdft_len - s->fir_len) * sizeof(*s->analysis_buf));
|
||||
memcpy(rdft_buf, s->analysis_buf, s->rdft_len/2 * sizeof(*s->analysis_buf));
|
||||
memcpy(rdft_buf + s->rdft_len/2, s->analysis_buf + s->analysis_rdft_len - s->rdft_len/2, s->rdft_len/2 * sizeof(*s->analysis_buf));
|
||||
memcpy(rdft_tbuf, s->analysis_buf, s->rdft_len/2 * sizeof(*s->analysis_buf));
|
||||
memcpy(rdft_tbuf + s->rdft_len/2, s->analysis_buf + s->analysis_rdft_len - s->rdft_len/2, s->rdft_len/2 * sizeof(*s->analysis_buf));
|
||||
if (s->min_phase)
|
||||
generate_min_phase_kernel(s, rdft_buf);
|
||||
av_rdft_calc(s->rdft, rdft_buf);
|
||||
generate_min_phase_kernel(s, rdft_tbuf);
|
||||
s->rdft_fn(s->rdft, rdft_buf, rdft_tbuf, sizeof(float));
|
||||
|
||||
for (k = 0; k < s->rdft_len; k++) {
|
||||
for (k = 0; k < s->rdft_len + 2; k++) {
|
||||
if (isnan(rdft_buf[k]) || isinf(rdft_buf[k])) {
|
||||
av_log(ctx, AV_LOG_ERROR, "filter kernel contains nan or infinity.\n");
|
||||
av_expr_free(gain_expr);
|
||||
|
@ -704,10 +701,8 @@ static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *g
|
|||
}
|
||||
|
||||
if (!s->min_phase) {
|
||||
rdft_buf[s->rdft_len-1] = rdft_buf[1];
|
||||
for (k = 0; k < s->rdft_len/2; k++)
|
||||
for (k = 0; k <= s->rdft_len/2; k++)
|
||||
rdft_buf[k] = rdft_buf[2*k];
|
||||
rdft_buf[s->rdft_len/2] = rdft_buf[s->rdft_len-1];
|
||||
}
|
||||
|
||||
if (dump_fp)
|
||||
|
@ -717,7 +712,7 @@ static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *g
|
|||
break;
|
||||
}
|
||||
|
||||
memcpy(s->kernel_buf, s->kernel_tmp_buf, (s->multi ? inlink->ch_layout.nb_channels : 1) * s->rdft_len * sizeof(*s->kernel_buf));
|
||||
memcpy(s->kernel_buf, s->kernel_tmp_buf, (s->multi ? inlink->ch_layout.nb_channels : 1) * (s->rdft_len * 2) * sizeof(*s->kernel_buf));
|
||||
av_expr_free(gain_expr);
|
||||
if (dump_fp)
|
||||
fclose(dump_fp);
|
||||
|
@ -731,7 +726,8 @@ static int config_input(AVFilterLink *inlink)
|
|||
{
|
||||
AVFilterContext *ctx = inlink->dst;
|
||||
FIREqualizerContext *s = ctx->priv;
|
||||
int rdft_bits;
|
||||
float iscale, scale = 1.f;
|
||||
int rdft_bits, ret;
|
||||
|
||||
common_uninit(s);
|
||||
|
||||
|
@ -753,11 +749,15 @@ static int config_input(AVFilterLink *inlink)
|
|||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
if (!(s->rdft = av_rdft_init(rdft_bits, DFT_R2C)) || !(s->irdft = av_rdft_init(rdft_bits, IDFT_C2R)))
|
||||
return AVERROR(ENOMEM);
|
||||
iscale = 0.5f;
|
||||
if (((ret = av_tx_init(&s->rdft, &s->rdft_fn, AV_TX_FLOAT_RDFT, 0, 1 << rdft_bits, &scale, 0)) < 0) ||
|
||||
((ret = av_tx_init(&s->irdft, &s->irdft_fn, AV_TX_FLOAT_RDFT, 1, 1 << rdft_bits, &iscale, 0)) < 0))
|
||||
return ret;
|
||||
|
||||
if (s->fft2 && !s->multi && inlink->ch_layout.nb_channels > 1 && !(s->fft_ctx = av_fft_init(rdft_bits, 0)))
|
||||
return AVERROR(ENOMEM);
|
||||
scale = 1.f;
|
||||
if (s->fft2 && !s->multi && inlink->ch_layout.nb_channels > 1 &&
|
||||
((ret = av_tx_init(&s->fft_ctx, &s->fft_fn, AV_TX_FLOAT_FFT, 0, 1 << rdft_bits, &scale, 0)) < 0))
|
||||
return ret;
|
||||
|
||||
if (s->min_phase) {
|
||||
int cepstrum_bits = rdft_bits + 2;
|
||||
|
@ -767,15 +767,23 @@ static int config_input(AVFilterLink *inlink)
|
|||
}
|
||||
|
||||
cepstrum_bits = FFMIN(RDFT_BITS_MAX, cepstrum_bits + 1);
|
||||
s->cepstrum_rdft = av_rdft_init(cepstrum_bits, DFT_R2C);
|
||||
s->cepstrum_irdft = av_rdft_init(cepstrum_bits, IDFT_C2R);
|
||||
if (!s->cepstrum_rdft || !s->cepstrum_irdft)
|
||||
return AVERROR(ENOMEM);
|
||||
scale = 1.f;
|
||||
ret = av_tx_init(&s->cepstrum_rdft, &s->cepstrum_rdft_fn, AV_TX_FLOAT_RDFT, 0, 1 << cepstrum_bits, &scale, 0);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
iscale = 0.5f;
|
||||
ret = av_tx_init(&s->cepstrum_irdft, &s->cepstrum_irdft_fn, AV_TX_FLOAT_RDFT, 1, 1 << cepstrum_bits, &iscale, 0);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
s->cepstrum_len = 1 << cepstrum_bits;
|
||||
s->cepstrum_buf = av_malloc_array(s->cepstrum_len, sizeof(*s->cepstrum_buf));
|
||||
if (!s->cepstrum_buf)
|
||||
return AVERROR(ENOMEM);
|
||||
s->cepstrum_tbuf = av_malloc_array(s->cepstrum_len + 2, sizeof(*s->cepstrum_tbuf));
|
||||
if (!s->cepstrum_tbuf)
|
||||
return AVERROR(ENOMEM);
|
||||
}
|
||||
|
||||
for ( ; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) {
|
||||
|
@ -789,20 +797,26 @@ static int config_input(AVFilterLink *inlink)
|
|||
return AVERROR(EINVAL);
|
||||
}
|
||||
|
||||
if (!(s->analysis_irdft = av_rdft_init(rdft_bits, IDFT_C2R)))
|
||||
return AVERROR(ENOMEM);
|
||||
iscale = 0.5f;
|
||||
if ((ret = av_tx_init(&s->analysis_irdft, &s->analysis_irdft_fn, AV_TX_FLOAT_RDFT, 1, 1 << rdft_bits, &iscale, 0)) < 0)
|
||||
return ret;
|
||||
|
||||
if (s->dumpfile) {
|
||||
s->analysis_rdft = av_rdft_init(rdft_bits, DFT_R2C);
|
||||
s->dump_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->dump_buf));
|
||||
scale = 1.f;
|
||||
if ((ret = av_tx_init(&s->analysis_rdft, &s->analysis_rdft_fn, AV_TX_FLOAT_RDFT, 0, 1 << rdft_bits, &scale, 0)) < 0)
|
||||
return ret;
|
||||
s->dump_buf = av_malloc_array(s->analysis_rdft_len + 2, sizeof(*s->dump_buf));
|
||||
}
|
||||
|
||||
s->analysis_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->analysis_buf));
|
||||
s->kernel_tmp_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->ch_layout.nb_channels : 1), sizeof(*s->kernel_tmp_buf));
|
||||
s->kernel_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->ch_layout.nb_channels : 1), sizeof(*s->kernel_buf));
|
||||
s->analysis_buf = av_malloc_array((s->analysis_rdft_len + 2), sizeof(*s->analysis_buf));
|
||||
s->analysis_tbuf = av_malloc_array(s->analysis_rdft_len + 2, sizeof(*s->analysis_tbuf));
|
||||
s->kernel_tmp_buf = av_malloc_array((s->rdft_len * 2) * (s->multi ? inlink->ch_layout.nb_channels : 1), sizeof(*s->kernel_tmp_buf));
|
||||
s->kernel_tmp_tbuf = av_malloc_array(s->rdft_len, sizeof(*s->kernel_tmp_tbuf));
|
||||
s->kernel_buf = av_malloc_array((s->rdft_len * 2) * (s->multi ? inlink->ch_layout.nb_channels : 1), sizeof(*s->kernel_buf));
|
||||
s->tx_buf = av_malloc_array(2 * (s->rdft_len + 2), sizeof(*s->kernel_buf));
|
||||
s->conv_buf = av_calloc(2 * s->rdft_len * inlink->ch_layout.nb_channels, sizeof(*s->conv_buf));
|
||||
s->conv_idx = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->conv_idx));
|
||||
if (!s->analysis_buf || !s->kernel_tmp_buf || !s->kernel_buf || !s->conv_buf || !s->conv_idx)
|
||||
if (!s->analysis_buf || !s->analysis_tbuf || !s->kernel_tmp_buf || !s->kernel_buf || !s->conv_buf || !s->conv_idx || !s->kernel_tmp_tbuf || !s->tx_buf)
|
||||
return AVERROR(ENOMEM);
|
||||
|
||||
av_log(ctx, AV_LOG_DEBUG, "sample_rate = %d, channels = %d, analysis_rdft_len = %d, rdft_len = %d, fir_len = %d, nsamples_max = %d.\n",
|
||||
|
@ -822,19 +836,19 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
|
|||
|
||||
if (!s->min_phase) {
|
||||
for (ch = 0; ch + 1 < inlink->ch_layout.nb_channels && s->fft_ctx; ch += 2) {
|
||||
fast_convolute2(s, s->kernel_buf, (FFTComplex *)(s->conv_buf + 2 * ch * s->rdft_len),
|
||||
fast_convolute2(s, s->kernel_buf, (AVComplexFloat *)(s->conv_buf + 2 * ch * s->rdft_len),
|
||||
s->conv_idx + ch, (float *) frame->extended_data[ch],
|
||||
(float *) frame->extended_data[ch+1], frame->nb_samples);
|
||||
}
|
||||
|
||||
for ( ; ch < inlink->ch_layout.nb_channels; ch++) {
|
||||
fast_convolute(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0),
|
||||
fast_convolute(s, s->kernel_buf + (s->multi ? ch * (s->rdft_len * 2) : 0),
|
||||
s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch,
|
||||
(float *) frame->extended_data[ch], frame->nb_samples);
|
||||
}
|
||||
} else {
|
||||
for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
|
||||
fast_convolute_nonlinear(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0),
|
||||
fast_convolute_nonlinear(s, s->kernel_buf + (s->multi ? ch * (s->rdft_len * 2) : 0),
|
||||
s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch,
|
||||
(float *) frame->extended_data[ch], frame->nb_samples);
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue