forked from FFmpeg/FFmpeg
avfilter/dnn_backend_torch: Simplify memory allocation
Signed-off-by: Zhao Zhili <zhilizhao@tencent.com> Reviewed-by: Wenbin Chen <wenbin.chen@intel.com> Reviewed-by: Guo Yejun <yejun.guo@intel.com>
This commit is contained in:
parent
abfefbb33b
commit
a1fea7e11b
1 changed files with 12 additions and 19 deletions
|
@ -37,8 +37,8 @@ extern "C" {
|
|||
}
|
||||
|
||||
typedef struct THModel {
|
||||
DNNModel model;
|
||||
DnnContext *ctx;
|
||||
DNNModel *model;
|
||||
torch::jit::Module *jit_model;
|
||||
SafeQueue *request_queue;
|
||||
Queue *task_queue;
|
||||
|
@ -141,7 +141,7 @@ static void dnn_free_model_th(DNNModel **model)
|
|||
ff_queue_destroy(th_model->task_queue);
|
||||
delete th_model->jit_model;
|
||||
av_freep(&th_model);
|
||||
av_freep(model);
|
||||
*model = NULL;
|
||||
}
|
||||
|
||||
static int get_input_th(void *model, DNNData *input, const char *input_name)
|
||||
|
@ -195,19 +195,19 @@ static int fill_model_input_th(THModel *th_model, THRequestItem *request)
|
|||
infer_request->input_tensor = new torch::Tensor();
|
||||
infer_request->output = new torch::Tensor();
|
||||
|
||||
switch (th_model->model->func_type) {
|
||||
switch (th_model->model.func_type) {
|
||||
case DFT_PROCESS_FRAME:
|
||||
input.scale = 255;
|
||||
if (task->do_ioproc) {
|
||||
if (th_model->model->frame_pre_proc != NULL) {
|
||||
th_model->model->frame_pre_proc(task->in_frame, &input, th_model->model->filter_ctx);
|
||||
if (th_model->model.frame_pre_proc != NULL) {
|
||||
th_model->model.frame_pre_proc(task->in_frame, &input, th_model->model.filter_ctx);
|
||||
} else {
|
||||
ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
|
||||
}
|
||||
}
|
||||
break;
|
||||
default:
|
||||
avpriv_report_missing_feature(NULL, "model function type %d", th_model->model->func_type);
|
||||
avpriv_report_missing_feature(NULL, "model function type %d", th_model->model.func_type);
|
||||
break;
|
||||
}
|
||||
*infer_request->input_tensor = torch::from_blob(input.data,
|
||||
|
@ -282,13 +282,13 @@ static void infer_completion_callback(void *args) {
|
|||
goto err;
|
||||
}
|
||||
|
||||
switch (th_model->model->func_type) {
|
||||
switch (th_model->model.func_type) {
|
||||
case DFT_PROCESS_FRAME:
|
||||
if (task->do_ioproc) {
|
||||
outputs.scale = 255;
|
||||
outputs.data = output->data_ptr();
|
||||
if (th_model->model->frame_post_proc != NULL) {
|
||||
th_model->model->frame_post_proc(task->out_frame, &outputs, th_model->model->filter_ctx);
|
||||
if (th_model->model.frame_post_proc != NULL) {
|
||||
th_model->model.frame_post_proc(task->out_frame, &outputs, th_model->model.filter_ctx);
|
||||
} else {
|
||||
ff_proc_from_dnn_to_frame(task->out_frame, &outputs, th_model->ctx);
|
||||
}
|
||||
|
@ -298,7 +298,7 @@ static void infer_completion_callback(void *args) {
|
|||
}
|
||||
break;
|
||||
default:
|
||||
avpriv_report_missing_feature(th_model->ctx, "model function type %d", th_model->model->func_type);
|
||||
avpriv_report_missing_feature(th_model->ctx, "model function type %d", th_model->model.func_type);
|
||||
goto err;
|
||||
}
|
||||
task->inference_done++;
|
||||
|
@ -417,17 +417,10 @@ static DNNModel *dnn_load_model_th(DnnContext *ctx, DNNFunctionType func_type, A
|
|||
THRequestItem *item = NULL;
|
||||
const char *device_name = ctx->device ? ctx->device : "cpu";
|
||||
|
||||
model = (DNNModel *)av_mallocz(sizeof(DNNModel));
|
||||
if (!model) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
th_model = (THModel *)av_mallocz(sizeof(THModel));
|
||||
if (!th_model) {
|
||||
av_freep(&model);
|
||||
if (!th_model)
|
||||
return NULL;
|
||||
}
|
||||
th_model->model = model;
|
||||
model = &th_model->model;
|
||||
model->model = th_model;
|
||||
th_model->ctx = ctx;
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue