/* AC3 Audio Decoder. * * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com). * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #define ALT_BITSTREAM_READER #include "ac3_decoder.h" #include "avcodec.h" #include "bitstream.h" #include "dsputil.h" #include "avutil.h" static const int sampling_rates[3] = { 32000, 44100, 48000 }; static const struct { int bit_rate; int frame_sizes[3]; } frame_size_table[38] = { { 32, { 96, 69, 64 } }, { 32, { 96, 70, 64 } }, { 40, { 120, 87, 80 } }, { 40, { 120, 88, 80 } }, { 48, { 144, 104, 96 } }, { 48, { 144, 105, 96 } }, { 56, { 168, 121, 112 } }, { 56, { 168, 122, 112 } }, { 64, { 192, 139, 128 } }, { 64, { 192, 140, 128 } }, { 80, { 240, 174, 160 } }, { 80, { 240, 175, 160 } }, { 96, { 288, 208, 192 } }, { 96, { 288, 209, 192 } }, { 112, { 336, 243, 224 } }, { 112, { 336, 244, 224 } }, { 128, { 384, 278, 256 } }, { 128, { 384, 279, 256 } }, { 160, { 480, 348, 320 } }, { 160, { 480, 349, 320 } }, { 192, { 576, 417, 384 } }, { 192, { 576, 418, 384 } }, { 224, { 672, 487, 448 } }, { 224, { 672, 488, 448 } }, { 256, { 768, 557, 512 } }, { 256, { 768, 558, 512 } }, { 320, { 960, 696, 640 } }, { 320, { 960, 697, 640 } }, { 384, { 1152, 835, 768 } }, { 384, { 1152, 836, 768 } }, { 448, { 1344, 975, 896 } }, { 448, { 1344, 976, 896 } }, { 512, { 1536, 1114, 1024 } }, { 512, { 1536, 1115, 1024 } }, { 576, { 1728, 1253, 1152 } }, { 576, { 1728, 1254, 1152 } }, { 640, { 1920, 1393, 1280 } } }; static int ac3_decode_init (AVCodecContext * avctx) { AC3DecodeContext *ctx = avctx->priv_data; ff_mdct_init (&ctx->mdct_ctx_256, 8, 1); ff_mdct_init (&ctx->mdct_ctx_512, 9, 1); ctx->samples = av_mallocz (6 * 6 * 256 * sizeof (float)); if (!(ctx->samples)) return -1; return 0; } static int ac3_synchronize (uint8_t * buf, int buf_size) { int i; for (i = 0; i < buf_size - 1; i++) if (buf[i] == 0x0b && buf[i + 1] == 0x77) return i; return -1; } //Returns -1 when 'fscod' is not valid; static int ac3_parse_sync_info (AC3DecodeContext * ctx) { ac3_sync_info *sync_info = &ctx->sync_info; GetBitContext *gb = &ctx->gb; sync_info->sync_word = get_bits_long (gb, 16); sync_info->crc1 = get_bits_long (gb, 16); sync_info->fscod = get_bits_long (gb, 2); if (sync_info->fscod == 0x03) return -1; sync_info->frmsizecod = get_bits_long (gb, 6); if (sync_info->frmsizecod >= 0x38) return -1; sync_info->sampling_rate = sampling_rates[sync_info->fscod]; sync_info->bit_rate = frame_size_table[sync_info->frmsizecod].bit_rate; sync_info->frame_size = frame_size_table[sync_info->frmsizecod].frame_sizes[sync_info->fscod]; return 0; } static const int nfchans_tbl[8] = { 2, 1, 2, 3, 3, 4, 4, 5 }; //Returns -1 when static int ac3_parse_bsi (AC3DecodeContext * ctx) { ac3_bsi *bsi = &ctx->bsi; uint32_t *flags = &bsi->flags; GetBitContext *gb = &ctx->gb; *flags = 0; bsi->cmixlev = 0; bsi->surmixlev = 0; bsi->dsurmod = 0; bsi->bsid = get_bits_long (gb, 5); if (bsi->bsid > 0x08) return -1; bsi->bsmod = get_bits_long (gb, 3); bsi->acmod = get_bits_long (gb, 3); if (bsi->acmod & 0x01 && bsi->acmod != 0x01) bsi->cmixlev = get_bits_long (gb, 2); if (bsi->acmod & 0x04) bsi->surmixlev = get_bits_long (gb, 2); if (bsi->acmod == 0x02) bsi->dsurmod = get_bits_long (gb, 2); if (get_bits_long (gb, 1)) *flags |= AC3_BSI_LFEON; bsi->dialnorm = get_bits_long (gb, 5); if (get_bits_long (gb, 1)) { *flags |= AC3_BSI_COMPRE; bsi->compr = get_bits_long (gb, 5); } if (get_bits_long (gb, 1)) { *flags |= AC3_BSI_LANGCODE; bsi->langcod = get_bits_long (gb, 8); } if (get_bits_long (gb, 1)) { *flags |= AC3_BSI_AUDPRODIE; bsi->mixlevel = get_bits_long (gb, 5); bsi->roomtyp = get_bits_long (gb, 2); } if (bsi->acmod == 0x00) { bsi->dialnorm2 = get_bits_long (gb, 5); if (get_bits_long (gb, 1)) { *flags |= AC3_BSI_COMPR2E; bsi->compr2 = get_bits_long (gb, 5); } if (get_bits_long (gb, 1)) { *flags |= AC3_BSI_LANGCOD2E; bsi->langcod2 = get_bits_long (gb, 8); } if (get_bits_long (gb, 1)) { *flags |= AC3_BSI_AUDPRODIE; bsi->mixlevel2 = get_bits_long (gb, 5); bsi->roomtyp2 = get_bits_long (gb, 2); } } if (get_bits_long (gb, 1)) *flags |= AC3_BSI_COPYRIGHTB; if (get_bits_long (gb, 1)) *flags |= AC3_BSI_ORIGBS; if (get_bits_long (gb, 1)) { *flags |= AC3_BSI_TIMECOD1E; bsi->timecod1 = get_bits_long (gb, 14); } if (get_bits_long (gb, 1)) { *flags |= AC3_BSI_TIMECOD2E; bsi->timecod2 = get_bits_long (gb, 14); } if (get_bits_long (gb, 1)) { *flags |= AC3_BSI_ADDBSIE; bsi->addbsil = get_bits_long (gb, 6); do { get_bits_long (gb, 8); } while (bsi->addbsil--); } bsi->nfchans = nfchans_tbl[bsi->acmod]; return 0; } static int bands[16] = { 31, 35, 37, 39, 41, 42, 43, 44, 45, 45, 46, 46, 47, 47, 48, 48 }; static const int diff_exps_M1[128] = { -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 25, 25, 25 }; static const int diff_exps_M2[128] = { -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 25, 25, 25 }; static const int diff_exps_M3[128] = { -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, 25, 25, 25 }; /* Decodes the grouped exponents (gexps) and stores them * in decoded exponents (dexps). */ static int _decode_exponents (int expstr, int ngrps, uint8_t absexp, uint8_t * gexps, uint8_t * dexps) { int i = 0, exp; while (ngrps--) { exp = gexps[i++]; absexp += diff_exps_M1[exp]; if (absexp > 24) return -1; if (expstr == AC3_EXPSTR_D45) { *(dexps++) = absexp; *(dexps++) = absexp; } else if (expstr == AC3_EXPSTR_D25) *(dexps++) = absexp; else *(dexps++) = absexp; absexp += diff_exps_M2[exp]; if (absexp > 24) return -1; if (expstr == AC3_EXPSTR_D45) { *(dexps++) = absexp; *(dexps++) = absexp; } else if (expstr == AC3_EXPSTR_D25) *(dexps++) = absexp; else *(dexps++) = absexp; absexp += diff_exps_M3[exp]; if (absexp > 24) return -1; if (expstr == AC3_EXPSTR_D45) { *(dexps++) = absexp; *(dexps++) = absexp; } else if (expstr == AC3_EXPSTR_D25) *(dexps++) = absexp; else *(dexps++) = absexp; } return 0; } static int decode_exponents (AC3DecodeContext * ctx) { ac3_audio_block *ab = &ctx->audio_block; int i; uint8_t *exps; uint8_t *dexps; if (ab->flags & AC3_AB_CPLINU && ab->cplexpstr != AC3_EXPSTR_REUSE) if (_decode_exponents (ab->cplexpstr, ab->ncplgrps, ab->cplabsexp, ab->cplexps, ab->dcplexps + ab->cplstrtmant)) return -1; for (i = 0; i < ctx->bsi.nfchans; i++) if (ab->chexpstr[i] != AC3_EXPSTR_REUSE) { exps = ab->exps[i]; dexps = ab->dexps[i]; if (_decode_exponents (ab->chexpstr[i], ab->nchgrps[i], exps[0], exps + 1, dexps + 1)) return -1; } if (ctx->bsi.flags & AC3_BSI_LFEON && ab->lfeexpstr != AC3_EXPSTR_REUSE) if (_decode_exponents (ab->lfeexpstr, 2, ab->lfeexps[0], ab->lfeexps + 1, ab->dlfeexps)) return -1; return 0; } static const int16_t slowdec[4] = { 0x0f, 0x11, 0x13, 0x15 }; /* slow decay table */ static const int16_t fastdec[4] = { 0x3f, 0x53, 0x67, 0x7b }; /* fast decay table */ static const int16_t slowgain[4] = { 0x540, 0x4d8, 0x478, 0x410 }; /* slow gain table */ static const int16_t dbpbtab[4] = { 0x000, 0x700, 0x900, 0xb00 }; /* dB/bit table */ static const int16_t floortab[8] = /* floor table */ { 0x2f0, 0x2b0, 0x270, 0x230, 0x1f0, 0x170, 0x0f0, 0xf800 }; static const int16_t fastgain[8] = /* fast gain table */ { 0x080, 0x100, 0x180, 0x200, 0x280, 0x300, 0x380, 0x400 }; static const int16_t bndtab[50] = /* start band table */ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 34, 37, 40, 43, 46, 49, 55, 61, 67, 73, 79, 85, 97, 109, 121, 133, 157, 181, 205, 229 }; static const int16_t bndsz[50] = /* band size table */ { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 24, 24, 24, 24, 24 }; static const int16_t masktab[256] = /* masking table */ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 35, 35, 35, 36, 36, 36, 36, 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 0, 0, 0 }; static const int16_t latab[256] = /* log addition table */ { 0x0040, 0x003f, 0x003e, 0x003d, 0x003c, 0x003b, 0x003a, 0x0039, 0x0038, 0x0037, 0x0036, 0x0035, 0x0034, 0x0034, 0x0033, 0x0032, 0x0031, 0x0030, 0x002f, 0x002f, 0x002e, 0x002d, 0x002c, 0x002c, 0x002b, 0x002a, 0x0029, 0x0029, 0x0028, 0x0027, 0x0026, 0x0026, 0x0025, 0x0024, 0x0024, 0x0023, 0x0023, 0x0022, 0x0021, 0x0021, 0x0020, 0x0020, 0x001f, 0x001e, 0x001e, 0x001d, 0x001d, 0x001c, 0x001c, 0x001b, 0x001b, 0x001a, 0x001a, 0x0019, 0x0019, 0x0018, 0x0018, 0x0017, 0x0017, 0x0016, 0x0016, 0x0015, 0x0015, 0x0015, 0x0014, 0x0014, 0x0013, 0x0013, 0x0013, 0x0012, 0x0012, 0x0012, 0x0011, 0x0011, 0x0011, 0x0010, 0x0010, 0x0010, 0x000f, 0x000f, 0x000f, 0x000e, 0x000e, 0x000e, 0x000d, 0x000d, 0x000d, 0x000d, 0x000c, 0x000c, 0x000c, 0x000c, 0x000b, 0x000b, 0x000b, 0x000b, 0x000a, 0x000a, 0x000a, 0x000a, 0x000a, 0x0009, 0x0009, 0x0009, 0x0009, 0x0009, 0x0008, 0x0008, 0x0008, 0x0008, 0x0008, 0x0008, 0x0007, 0x0007, 0x0007, 0x0007, 0x0007, 0x0007, 0x0006, 0x0006, 0x0006, 0x0006, 0x0006, 0x0006, 0x0006, 0x0006, 0x0005, 0x0005, 0x0005, 0x0005, 0x0005, 0x0005, 0x0005, 0x0005, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0004, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0002, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 }; static const int16_t hth[3][50] = /* hearing threshold table */ { {0x04d0, 0x04d0, 0x0440, 0x0400, 0x03e0, 0x03c0, 0x03b0, 0x03b0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x0390, 0x0390, 0x0390, 0x0380, 0x0380, 0x0370, 0x0370, 0x0360, 0x0360, 0x0350, 0x0350, 0x0340, 0x0340, 0x0330, 0x0320, 0x0310, 0x0300, 0x02f0, 0x02f0, 0x02f0, 0x02f0, 0x0300, 0x0310, 0x0340, 0x0390, 0x03e0, 0x0420, 0x0460, 0x0490, 0x04a0, 0x0440, 0x0440, 0x0400, 0x0520, 0x0800, 0x0840, 0x0840}, {0x04f0, 0x04f0, 0x0460, 0x0410, 0x03e0, 0x03d0, 0x03c0, 0x03b0, 0x03b0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x0390, 0x0390, 0x0390, 0x0380, 0x0380, 0x0380, 0x0370, 0x0370, 0x0360, 0x0360, 0x0350, 0x0350, 0x0340, 0x0340, 0x0320, 0x0310, 0x0300, 0x02f0, 0x02f0, 0x02f0, 0x02f0, 0x0300, 0x0320, 0x0350, 0x0390, 0x03e0, 0x0420, 0x0450, 0x04a0, 0x0490, 0x0460, 0x0440, 0x0480, 0x0630, 0x0840, 0x0840}, {0x0580, 0x0580, 0x04b0, 0x0450, 0x0420, 0x03f0, 0x03e0, 0x03d0, 0x03c0, 0x03b0, 0x03b0, 0x03b0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x03a0, 0x0390, 0x0390, 0x0390, 0x0390, 0x0380, 0x0380, 0x0380, 0x0370, 0x0360, 0x0350, 0x0340, 0x0330, 0x0320, 0x0310, 0x0300, 0x02f0, 0x02f0, 0x02f0, 0x0300, 0x0310, 0x0330, 0x0350, 0x03c0, 0x0410, 0x0470, 0x04a0, 0x0460, 0x0440, 0x0450, 0x04e0} }; static const uint8_t baptab[64] = /* bit allocation pointer table */ { 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15 }; static inline int16_t logadd (int16_t a, int16_t b) { int16_t c = a - b; uint8_t address = FFMIN ((ABS (c) >> 1), 255); return ((c >= 0) ? (a + latab[address]) : (b + latab[address])); } static inline int16_t calc_lowcomp (int16_t a, int16_t b0, int16_t b1, uint8_t bin) { if (bin < 7) { if ((b0 + 256) == b1) a = 384; else if (b0 > b1) a = FFMAX (0, a - 64); } else if (bin < 20) { if ((b0 + 256) == b1) a = 320; else if (b0 > b1) a = FFMAX (0, a - 64); } else { a = FFMAX (0, a - 128); } return a; } /* do the bit allocation for chnl. * chnl = 0 to 4 - fbw channel * chnl = 5 coupling channel * chnl = 6 lfe channel */ static int _do_bit_allocation (AC3DecodeContext * ctx, int chnl) { ac3_audio_block *ab = &ctx->audio_block; int16_t sdecay, fdecay, sgain, dbknee, floor; int16_t lowcomp, fgain, snroffset, fastleak, slowleak; int16_t psd[256], bndpsd[50], excite[50], mask[50], delta; uint8_t start, end, bin, i, j, k, lastbin, bndstrt, bndend, begin, deltnseg, band, seg, address; uint8_t fscod = ctx->sync_info.fscod; uint8_t *exps, *deltoffst, *deltlen, *deltba; uint8_t *baps; int do_delta = 0; /* initialization */ sdecay = slowdec[ab->sdcycod]; fdecay = fastdec[ab->fdcycod]; sgain = slowgain[ab->sgaincod]; dbknee = dbpbtab[ab->dbpbcod]; floor = dbpbtab[ab->floorcod]; if (chnl == 5) { start = ab->cplstrtmant; end = ab->cplendmant; fgain = fastgain[ab->cplfgaincod]; snroffset = (((ab->csnroffst - 15) << 4) + ab->cplfsnroffst) << 2; fastleak = (ab->cplfleak << 8) + 768; slowleak = (ab->cplsleak << 8) + 768; exps = ab->dcplexps; baps = ab->cplbap; if (ab->cpldeltbae == 0 || ab->cpldeltbae == 1) { do_delta = 1; deltnseg = ab->cpldeltnseg; deltoffst = ab->cpldeltoffst; deltlen = ab->cpldeltlen; deltba = ab->cpldeltba; } } else if (chnl == 6) { start = 0; end = 7; lowcomp = 0; fgain = fastgain[ab->lfefgaincod]; snroffset = (((ab->csnroffst - 15) << 4) + ab->lfefsnroffst) << 2; exps = ab->dlfeexps; baps = ab->lfebap; } else { start = 0; end = ab->endmant[chnl]; lowcomp = 0; fgain = fastgain[ab->fgaincod[chnl]]; snroffset = (((ab->csnroffst - 15) << 4) + ab->fsnroffst[chnl]) << 2; exps = ab->dexps[chnl]; baps = ab->bap[chnl]; if (ab->deltbae[chnl] == 0 || ab->deltbae[chnl] == 1) { do_delta = 1; deltnseg = ab->deltnseg[chnl]; deltoffst = ab->deltoffst[chnl]; deltlen = ab->deltlen[chnl]; deltba = ab->deltba[chnl]; } } for (bin = start; bin < end; bin++) /* exponent mapping into psd */ psd[bin] = (3072 - ((int16_t) (exps[bin] << 7))); /* psd integration */ j = start; k = masktab[start]; do { lastbin = FFMIN (bndtab[k] + bndsz[k], end); bndpsd[k] = psd[j]; j++; for (i = j; i < lastbin; i++) { bndpsd[k] = logadd (bndpsd[k], psd[j]); j++; } k++; } while (end > lastbin); /* compute the excite function */ bndstrt = masktab[start]; bndend = masktab[end - 1] + 1; if (bndstrt == 0) { lowcomp = calc_lowcomp (lowcomp, bndpsd[0], bndpsd[1], 0); excite[0] = bndpsd[0] - fgain - lowcomp; lowcomp = calc_lowcomp (lowcomp, bndpsd[1], bndpsd[2], 1); excite[1] = bndpsd[1] - fgain - lowcomp; begin = 7; for (bin = 2; bin < 7; bin++) { if (bndend != 7 || bin != 6) lowcomp = calc_lowcomp (lowcomp, bndpsd[bin], bndpsd[bin + 1], bin); fastleak = bndpsd[bin] - fgain; slowleak = bndpsd[bin] - sgain; excite[bin] = fastleak - lowcomp; if (bndend != 7 || bin != 6) if (bndpsd[bin] <= bndpsd[bin + 1]) { begin = bin + 1; break; } } for (bin = begin; bin < (FFMIN (bndend, 22)); bin++) { if (bndend != 7 || bin != 6) lowcomp = calc_lowcomp (lowcomp, bndpsd[bin], bndpsd[bin + 1], bin); fastleak -= fdecay; fastleak = FFMAX (fastleak, bndpsd[bin] - fgain); slowleak -= sdecay; slowleak = FFMAX (slowleak, bndpsd[bin] - sgain); excite[bin] = FFMAX (fastleak - lowcomp, slowleak); } begin = 22; } else { begin = bndstrt; } for (bin = begin; bin < bndend; bin++) { fastleak -= fdecay; fastleak = FFMAX (fastleak, bndpsd[bin] - fgain); slowleak -= sdecay; slowleak = FFMAX (slowleak, bndpsd[bin] - sgain); excite[bin] = FFMAX (fastleak, slowleak); } /* compute the masking curve */ for (bin = bndstrt; bin < bndend; bin++) { if (bndpsd[bin] < dbknee) excite[bin] += ((dbknee - bndpsd[bin]) >> 2); mask[bin] = FFMAX (excite[bin], hth[fscod][bin]); } /* apply the delta bit allocation */ if (do_delta) { band = 0; for (seg = 0; seg < deltnseg + 1; seg++) { band += deltoffst[seg]; if (deltba[seg] >= 4) delta = (deltba[seg] - 3) << 7; else delta = (deltba[seg] - 4) << 7; for (k = 0; k < deltlen[seg]; k++) { mask[band] += delta; band++; } } } /*compute the bit allocation */ i = start; j = masktab[start]; do { lastbin = FFMIN (bndtab[j] + bndsz[j], end); mask[j] -= snroffset; mask[j] -= floor; if (mask[j] < 0) mask[j] = 0; mask[j] &= 0x1fe0; mask[j] += floor; for (k = i; k < lastbin; k++) { address = (psd[i] - mask[j]) >> 5; address = FFMIN (63, (FFMAX (0, address))); baps[i] = baptab[address]; i++; } j++; } while (end > lastbin); return 0; } static int do_bit_allocation (AC3DecodeContext * ctx, int flags) { ac3_audio_block *ab = &ctx->audio_block; int i, snroffst = 0; if (!flags) /* bit allocation is not required */ return 0; if (ab->flags & AC3_AB_SNROFFSTE) { /* check whether snroffsts are zero */ snroffst += ab->csnroffst; if (ab->flags & AC3_AB_CPLINU) snroffst += ab->cplfsnroffst; for (i = 0; i < ctx->bsi.nfchans; i++) snroffst += ab->fsnroffst[i]; if (ctx->bsi.flags & AC3_BSI_LFEON) snroffst += ab->lfefsnroffst; if (!snroffst) { memset (ab->cplbap, 0, sizeof (ab->cplbap)); for (i = 0; i < ctx->bsi.nfchans; i++) memset (ab->bap[i], 0, sizeof (ab->bap[i])); memset (ab->lfebap, 0, sizeof (ab->lfebap)); return 0; } } /* perform bit allocation */ if ((ab->flags & AC3_AB_CPLINU) && (flags & 64)) if (_do_bit_allocation (ctx, 5)) return -1; for (i = 0; i < ctx->bsi.nfchans; i++) if (flags & (1 << i)) if (_do_bit_allocation (ctx, i)) return -1; if ((ctx->bsi.flags & AC3_BSI_LFEON) && (flags & 32)) if (_do_bit_allocation (ctx, 6)) return -1; return 0; } /* table for exponent to scale_factor mapping * scale_factor[i] = 2 ^ -(i + 15) */ static const float scale_factors[25] = { 0.000030517578125000000000000000000000000, 0.000015258789062500000000000000000000000, 0.000007629394531250000000000000000000000, 0.000003814697265625000000000000000000000, 0.000001907348632812500000000000000000000, 0.000000953674316406250000000000000000000, 0.000000476837158203125000000000000000000, 0.000000238418579101562500000000000000000, 0.000000119209289550781250000000000000000, 0.000000059604644775390625000000000000000, 0.000000029802322387695312500000000000000, 0.000000014901161193847656250000000000000, 0.000000007450580596923828125000000000000, 0.000000003725290298461914062500000000000, 0.000000001862645149230957031250000000000, 0.000000000931322574615478515625000000000, 0.000000000465661287307739257812500000000, 0.000000000232830643653869628906250000000, 0.000000000116415321826934814453125000000, 0.000000000058207660913467407226562500000, 0.000000000029103830456733703613281250000, 0.000000000014551915228366851806640625000, 0.000000000007275957614183425903320312500, 0.000000000003637978807091712951660156250, 0.000000000001818989403545856475830078125 }; static const int16_t l3_q_tab[3] = { /* 3-level quantization table */ (-2 << 15) / 3, 0, (2 << 15) / 3 }; static const int16_t l5_q_tab[5] = { /* 5-level quantization table */ (-4 << 15) / 5, (-2 << 15) / 5, 0, (2 << 15) / 5, (4 << 15) / 5 }; static const int16_t l7_q_tab[7] = { /* 7-level quantization table */ (-6 << 15) / 7, (-4 << 15) / 7, (-2 << 15) / 7, 0, (2 << 15) / 7, (4 << 15) / 7, (6 << 15) / 7 }; static const int16_t l11_q_tab[11] = { /* 11-level quantization table */ (-10 << 15) / 11, (-8 << 15) / 11, (-6 << 15) / 11, (-4 << 15) / 11, (-2 << 15) / 11, 0, (2 << 15) / 11, (4 << 15) / 11, (6 << 15) / 11, (8 << 15) / 11, (10 << 15) / 11 }; static const int16_t l15_q_tab[15] = { /* 15-level quantization table */ (-14 << 15) / 15, (-12 << 15) / 15, (-10 << 15) / 15, (-8 << 15) / 15, (-6 << 15) / 15, (-4 << 15) / 15, (-2 << 15) / 15, 0, (2 << 15) / 15, (4 << 15) / 15, (6 << 15) / 15, (8 << 15) / 15, (10 << 15) / 15, (12 << 15) / 15, (14 << 15) / 15 }; static const uint8_t qntztab[16] = { 0, 5, 7, 3, 7, 4, 5, 6, 7, 8, 9, 10, 12, 12, 14, 16 }; static inline float to_float (uint8_t exp, int16_t mantissa) { return ((float) (mantissa * scale_factors[exp])); } typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */ uint8_t gcodes[3]; uint8_t gcptr; } mant_group; /* Get the transform coefficients for particular channel */ static int _get_transform_coeffs (uint8_t * exps, uint8_t * bap, float *samples, int start, int end, int dith_flag, GetBitContext * gb) { int16_t mantissa; int i; int gcode; mant_group l3_grp, l5_grp, l11_grp; for (i = 0; i < 3; i++) l3_grp.gcodes[i] = l5_grp.gcodes[i] = l11_grp.gcodes[i] = -1; l3_grp.gcptr = l5_grp.gcptr = 3; l11_grp.gcptr = 2; i = 0; while (i < start) samples[i++] = 0; for (i = start; i < end; i++) { switch (bap[i]) { case 0: if (!dith_flag) mantissa = 0; else mantissa = gen_dither (); samples[i] = to_float (exps[i], mantissa); break; case 1: if (l3_grp.gcptr > 2) { gcode = get_bits_long (gb, qntztab[1]); if (gcode > 26) return -1; l3_grp.gcodes[0] = gcode / 9; l3_grp.gcodes[1] = (gcode % 9) / 3; l3_grp.gcodes[2] = (gcode % 9) % 3; l3_grp.gcptr = 0; } mantissa = l3_q_tab[l3_grp.gcodes[l3_grp.gcptr++]]; samples[i] = to_float (exps[i], mantissa); break; case 2: if (l5_grp.gcptr > 2) { gcode = get_bits_long (gb, qntztab[2]); if (gcode > 124) return -1; l5_grp.gcodes[0] = gcode / 25; l5_grp.gcodes[1] = (gcode % 25) / 5; l5_grp.gcodes[2] = (gcode % 25) % 5; l5_grp.gcptr = 0; } mantissa = l5_q_tab[l5_grp.gcodes[l5_grp.gcptr++]]; samples[i] = to_float (exps[i], mantissa); break; case 3: mantissa = get_bits_long (gb, qntztab[3]); if (mantissa > 6) return -1; mantissa = l7_q_tab[mantissa]; samples[i] = to_float (exps[i], mantissa); break; case 4: if (l11_grp.gcptr > 1) { gcode = get_bits_long (gb, qntztab[4]); if (gcode > 120) return -1; l11_grp.gcodes[0] = gcode / 11; l11_grp.gcodes[1] = gcode % 11; } mantissa = l11_q_tab[l11_grp.gcodes[l11_grp.gcptr++]]; samples[i] = to_float (exps[i], mantissa); break; case 5: mantissa = get_bits_long (gb, qntztab[5]); if (mantissa > 14) return -1; mantissa = l15_q_tab[mantissa]; break; default: mantissa = get_bits_long (gb, qntztab[bap[i]]) << (16 - qntztab[bap[i]]); samples[i] = to_float (exps[i], mantissa); break; } } i = end; while (i < 256) samples[i++] = 0; return 0; } static int uncouple_channels (AC3DecodeContext * ctx) { ac3_audio_block *ab = &ctx->audio_block; int ch, sbnd, bin; int index; float (*samples)[256]; int16_t mantissa; samples = (float (*)[256]) (ab->ab_samples); samples += (ctx->bsi.flags & AC3_BSI_LFEON) ? 256 : 0; /* uncouple channels */ for (ch = 0; ch < ctx->bsi.nfchans; ch++) if (ab->chincpl & (1 << ch)) for (sbnd = ab->cplbegf; sbnd < 3 + ab->cplendf; sbnd++) for (bin = 0; bin < 12; bin++) { index = sbnd * 12 + bin + 37; samples[ch][index] = ab->cplcoeffs[index] * ab->cplco[ch][sbnd] * 8; } /* generate dither if required */ for (ch = 0; ch < ctx->bsi.nfchans; ch++) if ((ab->chincpl & (1 << ch)) && (ab->dithflag & (1 << ch))) for (index = 0; index < ab->endmant[ch]; index++) if (!ab->bap[ch][index]) { mantissa = gen_dither (); samples[ch][index] = to_float (ab->dexps[ch][index], mantissa); } return 0; } static int get_transform_coeffs (AC3DecodeContext * ctx) { int i; ac3_audio_block *ab = &ctx->audio_block; float *samples = ab->ab_samples; int got_cplchan = 0; int dithflag = 0; samples += (ctx->bsi.flags & AC3_BSI_LFEON) ? 256 : 0; for (i = 0; i < ctx->bsi.nfchans; i++) { if ((ab->flags & AC3_AB_CPLINU) && (ab->chincpl & (1 << i))) dithflag = 0; /* don't generate dither until channels are decoupled */ else dithflag = ab->dithflag & (1 << i); /* transform coefficients for individual channel */ if (_get_transform_coeffs (ab->dexps[i], ab->bap[i], samples + (i * 256), 0, ab->endmant[i], dithflag, &ctx->gb)) return -1; /* tranform coefficients for coupling channels */ if ((ab->flags & AC3_AB_CPLINU) && (ab->chincpl & (1 << i)) && !got_cplchan) { if (_get_transform_coeffs (ab->dcplexps, ab->cplbap, ab->cplcoeffs, ab->cplstrtmant, ab->cplendmant, 0, &ctx->gb)) return -1; got_cplchan = 1; } } /* uncouple the channels from the coupling channel */ if (ab->flags & AC3_AB_CPLINU) if (uncouple_channels (ctx)) return -1; return 0; } /* generate coupling co-ordinates for each coupling subband * from coupling co-ordinates of each band and coupling band * structure information */ static int generate_coupling_coordinates (AC3DecodeContext * ctx) { ac3_audio_block *ab = &ctx->audio_block; uint8_t exp, mstrcplco; int16_t mant; uint32_t cplbndstrc = (1 << ab->ncplsubnd) >> 1; int ch, bnd, sbnd; float cplco; if (ab->cplcoe) for (ch = 0; ch < ctx->bsi.nfchans; ch++) if (ab->cplcoe & (1 << ch)) { mstrcplco = 3 * ab->mstrcplco[ch]; sbnd = ab->cplbegf; for (bnd = 0; bnd < ab->ncplbnd; bnd++) { exp = ab->cplcoexp[ch][bnd]; if (exp == 15) mant = ab->cplcomant[ch][bnd] <<= 14; else mant = (ab->cplcomant[ch][bnd] | 0x10) << 13; cplco = to_float (exp + mstrcplco, mant); if (ctx->bsi.acmod == 0x02 && (ab->flags & AC3_AB_PHSFLGINU) && ch == 1 && (ab->phsflg & (1 << bnd))) cplco = -cplco; /* invert the right channel */ ab->cplco[ch][sbnd++] = cplco; while (cplbndstrc & ab->cplbndstrc) { cplbndstrc >>= 1; ab->cplco[ch][sbnd++] = cplco; } cplbndstrc >>= 1; } } return 0; } static int ac3_parse_audio_block (AC3DecodeContext * ctx, int index) { ac3_audio_block *ab = &ctx->audio_block; int nfchans = ctx->bsi.nfchans; int acmod = ctx->bsi.acmod; int i, bnd, rbnd, grp, seg; GetBitContext *gb = &ctx->gb; uint32_t *flags = &ab->flags; int bit_alloc_flags = 0; *flags = 0; ab->blksw = 0; for (i = 0; i < nfchans; i++) /*block switch flag */ ab->blksw |= get_bits_long (gb, 1) << i; ab->dithflag = 0; for (i = 0; i < nfchans; i++) /* dithering flag */ ab->dithflag |= get_bits_long (gb, 1) << i; if (get_bits_long (gb, 1)) { /* dynamic range */ *flags |= AC3_AB_DYNRNGE; ab->dynrng = get_bits_long (gb, 8); } if (acmod == 0x00) { /* dynamic range 1+1 mode */ if (get_bits_long (gb, 1)) { *flags |= AC3_AB_DYNRNG2E; ab->dynrng2 = get_bits_long (gb, 8); } } ab->chincpl = 0; if (get_bits_long (gb, 1)) { /* coupling strategy */ *flags |= AC3_AB_CPLSTRE; ab->cplbndstrc = 0; if (get_bits_long (gb, 1)) { /* coupling in use */ *flags |= AC3_AB_CPLINU; for (i = 0; i < nfchans; i++) ab->chincpl |= get_bits_long (gb, 1) << i; if (acmod == 0x02) if (get_bits_long (gb, 1)) /* phase flag in use */ *flags |= AC3_AB_PHSFLGINU; ab->cplbegf = get_bits_long (gb, 4); ab->cplendf = get_bits_long (gb, 4); if ((ab->ncplsubnd = 3 + ab->cplendf - ab->cplbegf) < 0) return -1; ab->ncplbnd = ab->ncplsubnd; for (i = 0; i < ab->ncplsubnd - 1; i++) /* coupling band structure */ if (get_bits_long (gb, 1)) { ab->cplbndstrc |= 1 << i; ab->ncplbnd--; } } } if (*flags & AC3_AB_CPLINU) { ab->cplcoe = 0; for (i = 0; i < nfchans; i++) if (ab->chincpl & (1 << i)) if (get_bits_long (gb, 1)) { /* coupling co-ordinates */ ab->cplcoe |= 1 << i; ab->mstrcplco[i] = get_bits_long (gb, 2); for (bnd = 0; bnd < ab->ncplbnd; bnd++) { ab->cplcoexp[i][bnd] = get_bits_long (gb, 4); ab->cplcomant[i][bnd] = get_bits_long (gb, 4); } } } ab->phsflg = 0; if ((acmod == 0x02) && (*flags & AC3_AB_PHSFLGINU) && (ab->cplcoe & 1 || ab->cplcoe & (1 << 1))) { for (bnd = 0; bnd < ab->ncplbnd; bnd++) if (get_bits_long (gb, 1)) ab->phsflg |= 1 << bnd; } generate_coupling_coordinates (ctx); ab->rematflg = 0; if (acmod == 0x02) /* rematrixing */ if (get_bits_long (gb, 1)) { *flags |= AC3_AB_REMATSTR; if (ab->cplbegf > 2 || !(*flags & AC3_AB_CPLINU)) for (rbnd = 0; rbnd < 4; rbnd++) ab->rematflg |= get_bits_long (gb, 1) << bnd; else if (ab->cplbegf > 0 && ab->cplbegf <= 2 && *flags & AC3_AB_CPLINU) for (rbnd = 0; rbnd < 3; rbnd++) ab->rematflg |= get_bits_long (gb, 1) << bnd; else if (!(ab->cplbegf) && *flags & AC3_AB_CPLINU) for (rbnd = 0; rbnd < 2; rbnd++) ab->rematflg |= get_bits_long (gb, 1) << bnd; } if (*flags & AC3_AB_CPLINU) /* coupling exponent strategy */ ab->cplexpstr = get_bits_long (gb, 2); for (i = 0; i < nfchans; i++) /* channel exponent strategy */ ab->chexpstr[i] = get_bits_long (gb, 2); if (ctx->bsi.flags & AC3_BSI_LFEON) /* lfe exponent strategy */ ab->lfeexpstr = get_bits_long (gb, 1); for (i = 0; i < nfchans; i++) /* channel bandwidth code */ if (ab->chexpstr[i] != AC3_EXPSTR_REUSE) if (!(ab->chincpl & (1 << i))) { ab->chbwcod[i] = get_bits_long (gb, 6); if (ab->chbwcod[i] > 60) return -1; } if (*flags & AC3_AB_CPLINU) if (ab->cplexpstr != AC3_EXPSTR_REUSE) {/* coupling exponents */ bit_alloc_flags |= 64; ab->cplabsexp = get_bits_long (gb, 4) << 1; ab->cplstrtmant = (ab->cplbegf * 12) + 37; ab->cplendmant = ((ab->cplendmant + 3) * 12) + 37; ab->ncplgrps = (ab->cplendmant - ab->cplstrtmant) / (3 << (ab->cplexpstr - 1)); for (grp = 0; grp < ab->ncplgrps; grp++) ab->cplexps[grp] = get_bits_long (gb, 7); } for (i = 0; i < nfchans; i++) /* fbw channel exponents */ if (ab->chexpstr[i] != AC3_EXPSTR_REUSE) { bit_alloc_flags |= 1 << i; if (ab->chincpl & (1 << i)) ab->endmant[i] = (ab->cplbegf * 12) + 37; else ab->endmant[i] = ((ab->chbwcod[i] + 3) * 12) + 37; ab->nchgrps[i] = (ab->endmant[i] + (3 << (ab->chexpstr[i] - 1)) - 4) / (3 << (ab->chexpstr[i] - 1)); ab->exps[i][0] = ab->dexps[i][0] = get_bits_long (gb, 4); for (grp = 1; grp <= ab->nchgrps[i]; grp++) ab->exps[i][grp] = get_bits_long (gb, 7); ab->gainrng[i] = get_bits_long (gb, 2); } if (ctx->bsi.flags & AC3_BSI_LFEON) /* lfe exponents */ if (ab->lfeexpstr != AC3_EXPSTR_REUSE) { bit_alloc_flags |= 32; ab->lfeexps[0] = ab->dlfeexps[0] = get_bits_long (gb, 4); ab->lfeexps[1] = get_bits_long (gb, 7); ab->lfeexps[2] = get_bits_long (gb, 7); } if (decode_exponents (ctx)) /* decode the exponents for this block */ return -1; if (get_bits_long (gb, 1)) { /* bit allocation information */ *flags |= AC3_AB_BAIE; bit_alloc_flags |= 127; ab->sdcycod = get_bits_long (gb, 2); ab->fdcycod = get_bits_long (gb, 2); ab->sgaincod = get_bits_long (gb, 2); ab->dbpbcod = get_bits_long (gb, 2); ab->floorcod = get_bits_long (gb, 3); } if (get_bits_long (gb, 1)) { /* snroffset */ *flags |= AC3_AB_SNROFFSTE; bit_alloc_flags |= 127; ab->csnroffst = get_bits_long (gb, 6); if (*flags & AC3_AB_CPLINU) { /* couling fine snr offset and fast gain code */ ab->cplfsnroffst = get_bits_long (gb, 4); ab->cplfgaincod = get_bits_long (gb, 3); } for (i = 0; i < nfchans; i++) { /* channel fine snr offset and fast gain code */ ab->fsnroffst[i] = get_bits_long (gb, 4); ab->fgaincod[i] = get_bits_long (gb, 3); } if (ctx->bsi.flags & AC3_BSI_LFEON) { /* lfe fine snr offset and fast gain code */ ab->lfefsnroffst = get_bits_long (gb, 4); ab->lfefgaincod = get_bits_long (gb, 3); } } if (*flags & AC3_AB_CPLINU) if (get_bits_long (gb, 1)) { /* coupling leak information */ bit_alloc_flags |= 64; *flags |= AC3_AB_CPLLEAKE; ab->cplfleak = get_bits_long (gb, 3); ab->cplsleak = get_bits_long (gb, 3); } if (get_bits_long (gb, 1)) { /* delta bit allocation information */ *flags |= AC3_AB_DELTBAIE; bit_alloc_flags |= 127; if (*flags & AC3_AB_CPLINU) { ab->cpldeltbae = get_bits_long (gb, 2); if (ab->cpldeltbae == AC3_DBASTR_RESERVED) return -1; } for (i = 0; i < nfchans; i++) { ab->deltbae[i] = get_bits_long (gb, 2); if (ab->deltbae[i] == AC3_DBASTR_RESERVED) return -1; } if (*flags & AC3_AB_CPLINU) if (ab->cpldeltbae == AC3_DBASTR_NEW) { /*coupling delta offset, len and bit allocation */ ab->cpldeltnseg = get_bits_long (gb, 3); for (seg = 0; seg <= ab->cpldeltnseg; seg++) { ab->cpldeltoffst[seg] = get_bits_long (gb, 5); ab->cpldeltlen[seg] = get_bits_long (gb, 4); ab->cpldeltba[seg] = get_bits_long (gb, 3); } } for (i = 0; i < nfchans; i++) if (ab->deltbae[i] == AC3_DBASTR_NEW) {/*channel delta offset, len and bit allocation */ ab->deltnseg[i] = get_bits_long (gb, 3); for (seg = 0; seg <= ab->deltnseg[i]; seg++) { ab->deltoffst[i][seg] = get_bits_long (gb, 5); ab->deltlen[i][seg] = get_bits_long (gb, 4); ab->deltba[i][seg] = get_bits_long (gb, 3); } } } if (do_bit_allocation (ctx, bit_alloc_flags)) /* perform the bit allocation */ return -1; if (get_bits_long (gb, 1)) { /* unused dummy data */ *flags |= AC3_AB_SKIPLE; ab->skipl = get_bits_long (gb, 9); while (ab->skipl) { get_bits_long (gb, 8); ab->skipl--; } } /* point ab_samples to the right place within smaples */ if (!index) ab->ab_samples = ctx->samples; else { ab->ab_samples = ctx->samples + (i * nfchans * 256); ab->ab_samples += ((ctx->bsi.flags & AC3_BSI_LFEON) ? 256 : 0); } /* unpack the transform coefficients * this also uncouples channels if coupling is in use. */ if (get_transform_coeffs (ctx)) return -1; return 0; } static int ac3_decode_frame (AVCodecContext * avctx, void *data, int *data_size, uint8_t * buf, int buf_size) { AC3DecodeContext *ctx = avctx->priv_data; int frame_start; int i; //Synchronize the frame. frame_start = ac3_synchronize (buf, buf_size); if (frame_start == -1) { *data_size = 0; return -1; } //Initialize the GetBitContext with the start of valid AC3 Frame. init_get_bits (&(ctx->gb), buf + frame_start, (buf_size - frame_start) * 8); //Parse the syncinfo. //If 'fscod' is not valid the decoder shall mute as per the standard. if (ac3_parse_sync_info (ctx)) { *data_size = 0; return -1; } //Check for the errors. /*if (ac3_error_check(ctx)) { *data_size = 0; return -1; } */ //Parse the BSI. //If 'bsid' is not valid decoder shall not decode the audio as per the standard. if (ac3_parse_bsi (ctx)) { *data_size = 0; return -1; } //Parse the Audio Blocks. for (i = 0; i < 6; i++) if (ac3_parse_audio_block (ctx, i)) { *data_size = 0; return -1; } return 0; }